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MARTIN'S AXIOM DOES NOT IMPLY THAT 
EVERY TWO N1-DENSE SETS OF REALS 

ARE ISOMORPHIC 

BY 

URI AVRAHAM* AND SAHARON SHELAH t* 

ABSTRACT 

Assuming the consistency of ZFC we prove the claim in the title by showing the 
consistency with ZFC of: There exists a set of reals A such that every function 
from A to A is order preserving on an uncountable set. We prove related 
results among which is the consistency with ZFC of: Every function from the 
reals into the reals is monotonic on an uncountable set. 

§1. Introduction 

Martin's Axiom is so powerful and has been used so diversely that one can 

almost get the impression that there is nothing this axiom cannot settle. There 

are, however, Some consistency constructions which are very similar to the proof 

used by Solovay and Tennenbaum to get Martin's Axiom, yet the statements 

whose consistency these constructions give are not known to follow from 

Martin's Axiom (M.A.). The first example is due to J. Baumgartner who has 

shown the consistency of ZFC and Martin's Axiom and 2 ~'' > N, and every two 

l~]-dense sets of reals are order-isomorphic. (A set of reals is l,l,-dense iff it has no 

end points and between any two points of the set there are 1,11 points of the set.) 

The structure of Baumgartner 's  proof [2] is like that of Solovay and Tennen- 

baum [6], but his proof is quite complicated. So, a natural question, asked by 

Baumgartner,  is whether Martin's Axiom and 2 ~,, > 1~, already imply that every 

two l~-dense sets of reals are isomorphic. 
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At the intermediate stages of the forcing iteration done in [2] the crucial fact 

that the continuum hypothesis (C.H.) holds is used as follows: Assuming C.H., 

Baumgartner  proved that for every two l~l-dense sets of reals there exists a c.c.c. 

poset P such that forcing with P makes the two sets isomorphic. So, it is natural 

to look for a universe where 2 No > N~ holds and in which 

There are two l~-dense sets of reals which cannot 

(1) 
be made isomorphic by any c.c.c, poset forcing. 

Having obtained such a universe, it is possible to extend it further by a c.c.c. 

poset forcing to get Martin's Axiom and there are two nonisomorphic Xl-dense 

sets of reals, thus showing that Martin's Axiom does not imply isomorphism of 

l~rdense sets. The strategy to get such a universe is to start with two Nl-dense 

sets which are very far from being isomorphic (in a sense which will be made 

precise) and iteratively kill one after the other all c.c.c, posets which might make 

these subsets isomorphic. To kill such a poset we introduce (generically) an 

uncountable antichain to it thus erasing its c.c.c, property. This is quite a general 

method of obtaining consistency results with Martin's Axiom and it will be 

described in §5. 

We will get our first example for (1) in another way, using Theorem 2 which is 

a consistency result on monotonic functions. 

Let R be the set of reals, a function f :A-- -~R,  A C R  is said to be 

order-preserving iff for a, b E A,  a <- b ---> f (a  ) <- f (b  ). 

2. THEOREM. The following is consistent with ZFC: 

There exists a set of reals A which is l~I~-dense such that 

(3) for every function f: A --> A there is an uncountable subset 

A ' of A such that [ [ A ' is order preserving. 

(3) implies (I) as follows: Suppose A satisfies (3), let A = { - r: r ~ A}, then as 

we shall see, A and ,~ are the two l~l~-dense sets of reals which cannot be made 

isomorphic by any c.c.c, poset extension. Suppose P is a poset such that in its 

Boolean universe A and ,4 are isomorphic; then it follows that in this universe 

there is a function f:  A ~ A which is an anti-isomorphism, i.e., a < b ~ f ( a )  > 

[(b). For any a E A  pick now some p a E P  and some h ( a ) ~ A  such that 

pa II-f(a)= h(a)  (where x denotes the canonical name of x ~ V). By our 

assumption, the function a ~ h (a)  is order preserving on an uncountable subset 

A '  of A. But then for a, a '  ~ A '  if a ~ a '  then p, and p~, are incompatible. Hence 

P does not satisfy the c.c.c. 
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Theorem 2 is proved in §2. 

C.H. implies that (3) does not hold; in [5], C62, where C.H. is assumed, a 

function f:  A ~ A is constructed which is not continuous on any uncountable 

subset, and hence not monotonic on any uncountable subset. 

Obviously for a general set A of reals one cannot expect every function 

f:  A --> R to be order  preserving on an uncountable subset, so the following 

theorem answers the natural question. 

4. THEOREM. The following is consistent with ZFC and 2",,-- N2: 

For any A C_ R of cardinality N~ and any f: A --> R there 

exists a set A ' C  A of cardinality N~ such that f I A '  is 

(5) monotic. (f is said to be monotonic iff f is non-decreasing : 

x < y - - > f ( x ) < = f ( y ) ,  or f is non-increasing, x < y - - >  

f (x)  >= f(y)). 

The proof of Theorem 4 is given in §3. In §4 we prove the following 

strengthening of Theorem 4. 

6. THEOREM. It is consistent with ZFC and 2 -° = N2 that for every A C R of 

cardinality N~ and f: A ---> R, a one-to-one function, f is the union of countably 

many monotonic functions. 

In §5 we deal with entangled sets of reals (to be defined there) and show that 

Martin's Axiom and 2 -0 > 1,ll is consistent with the existence of an entangled set 

of reals. These imply that there are uncountable real functions which do not 

include any uncountable monotonic functions. 

The question about the consistence of (5) was asked, independently, by F. 

Galvin who has noticed the following: tol--->[to,]62 implies (5) which in turn 

implies cf 2 -0 > N1. (See [3] lemma 2 and §3 and §4, not for proofs but for some 

hints.) 

The proof that Martin's Axiom does not imply the isomorphism of Ml-dense 

sets is due to Shetah; Avraham extracted Theorem 2 from that proof. Theorem 4 

is due to Avraham; it is based on Shelah's method for constructing c.c.c, posets 

using closed unbounded subsets of to1, a method which was invented to 

investigate consistency results on real orders and to simplify Baumgartner 's  

proof. Theorem 6 and §5 are due to Shelah. Some further applications of these 

methods will appear in [1]. 

We would like to thank the referee for helpful suggestions. 
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§2. Proof of Theorem 2 

We describe first the structure of the proof of Theorem 2. We start with a set 

A of 1~1 generic Cohen reals, A satisfies a certain property which enables us, 

given any function on A into A, to force an uncountable subset on which this 

function is order preserving. We iterate forcing with appropriate c.c.c, posets N2 

times, dealing with all possible functions and keeping this property of A. 

Let V be our universe. First make a generic extension using the poset of all 

finite functions from ~o~ × to to {0, 1}, we obtain thus the set A = {r~ I f  E col} 

where the re's are 1~1 generic reals. In V[A], A satisfies the following property, 

as can be seen: 

Let ( ~  I a < ~ol) be a sequence of n-tuples of increasing 

countable ordinals, 

~,~ = (a (a, 1 ) , . . . ,  a (o~, n)), 
(7) 

a(c~, 1 )<  a(a ,  2) < • • • < a (a ,  n ) <  to~. 

Then for some a </3  < o)l, ra~.o <- ra~.o holds for every 

i<-_n. 

PROOF. Say P = {h I h is a finite function from o91 x to to {0, 1}}. Let h E P 

and let ~- be a name in P-forcing such that h IF r is a function defined on to1, and 

for a < to1 z ( a )  is an increasing n-tuple of countable ordinals. Now, for all 

a < to~ find h~ E P, he => h and an increasing sequence tie = 

(a(a ,  1 ) , . . - ,  a (a ,  n)) of countable ordinals such that h~ IF ~-(t~) = ~e. (We should 

write canonical names for members of V, but we won't  do it.) Next, using a 

A-system argument we can find an uncountable I C to1 such that: (1) There  is 

an l < n  such tha t ' for  all ct,/3EI, a</3  we have a(a,i)=a(/3,  i) for i<=l 
and a(a , i )<a( f l ,  j) for l < i , j < n .  (2) For a , /3EI ,  i<--n and k < t o ,  

(a(a ,  i), k) E Dora(he) iff (a(/3, i), k) E Dom(ha),  and in this case 

h~((a(a,i) ,k))= h~((a(/3, i),k)). (3) {Dom(h~)}a ~ I }  is a A-system and the 

he's agree on the intersection of their domains (so that h~ U h~ is a function for 

,~,/3 ~ I).  
Now, pick any a,/3 E / ,  a </3. Let h' = he U h~ E P. Define h"  => h ', h" E P as 

follows. For every l < i  < n  let m~ be the least integer such that 

(a(a ,  i), m , ) ~  Dom(h~).  We set h"(a(a, i), m~) = 0 and h"(a(/3, i), m,) = 1 (this 

is possible since for i > l a (~, i) < a (/3, i)). Thinking of reals as sequences of 

{0, 1} ordered lexicographically, we obtain h" IF z (a  ) = tie, I-(/3) = ~i~ and r,~. o =< 

r~ .  o holds for every i <= n. 
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8. DEFINITION. Let  A = {re ls  ¢ E to,} be  a set of reals satisfying (7). Any  

funct ion f :  to,--~to, can be  natural ly  viewed as a funct ion f rom A to A ;  

f i fe )  = rr~e~. 
G iven  a funct ion f :  to, ~ to, we define a pose t  Qt with the aid of which we 

shall ob ta in  an uncoun tab le  subset  of A where  f is o rde r  preserving.  We  can 

assume f is one  to one,  as the fixed funct ion is o rder  preserving.  

Qr = {e c to, I e is finite and f [ e is o rder  preserving}. 

QI consists of finite approx ima t ions  to the desi red subset  of A. We  take  the 

part ial  o rde r  of QI to be  inclusion. 

9. LEMMA. I r A  = {re I ~ E to~} is a set of  reals satisfying (7), then for any one- 
to-one jr: to, --~ to,, Or satisfies the c.c.c. 

PROOF. Assume  that  ee C to~, ~: ~ to,, are ~I, condi t ions  in Qr ; we will find two 

which are compat ib le ,  ee Uf [ee ]  = ae is a finite set of ordinals  hence  we can 

assume that  the ae 's  fo rm a A-system (i.e., by taking an uncountab le  subset  we 

assume that  there  is a fixed set b such that  ae n a ,  = b for  all ~ < ~7 < to,). 

Moreove r ,  for  every  ~ pick a rat ional  n u m b e r  be tween  any two reals in 

{r, I r / E  ae}, look at the finite mode l  whose universe  Me consists of  the ordinals  

in ae, the  reals I", for  r/ E ae and the rat ionals  chosen be tween  the reals, and in 

which we have  a (partial)  funct ion f l e e  and rela t ions <o°,  <r~ which are the 

orders  on the ordinals  and  on the reals, and the funct ion rl ~ r,, , / E  ae. Again  

we can assume that  the set {Me I~: < to,} has been  appropr ia te ly  th inned out  so 

t h a t  the i somorph i sm type of the mode l  M~ and the rat ional  number s  in Me do 

not d e p e n d  on ~ for ~c < to1. 

Let  de be  an n - tup le  enumera t ing  in an increasing ordinal  o rder  the e lements  

of ae. tie = (a  (~:, 1 ) , . . . ,  a(£,  n)). Using p rope r ty  (7) of A we get a < / 3  such that  

r,(.,,n_- <r.(~,,~ for  i N  n. We  claim that  e~ U eo is in Qr thus providing two 

compa t ib le  condit ions.  T o  p rove  this, we must  show that  f is o rder  preserving on 

e,, U eo. So let x ,y  E e~ U e~, if bo th  x and y belong to ea or  e~ then f is o rder  

preserving on {r~, ry}. A s s u m e  x E ea, y E eo, there  are two cases: The  first is that  

for  s o m e  i ~  j, x = a(ol, i), y = a(/3,j) .  Then  look at a(a , ] ) ,  if ro~,,~<Rro~.,.j~ (for 

example )  then there  is a ra t ional  n u m b e r  q ~ M~ such that  r~(~.,~ < q < r~.j~, but  

then,  as M ,  and  M~ are i somorphic ,  we have  q < r.t~j~ and hence  rot~.,~ < ro(~.j~. 

Moreove r ,  f rom rot..,~ < r~(~.j~ follows rr~ot~.~)< r~t~.j~ and then,  using the ra t ional  

p icked be tween  these  reals and the i somorph i sm of M~ and Mo we get 

rft, t,.n) < r~,to.,~). T h e  second case is that  for  some  i, x = a(a ,  i), y = a(/3, i). As 

we wro te  above ,  r ~ , ~  <- r,t~,~. N o w  if k is such that  f ( a ( a ,  i)) = a(a ,  k )  then  by 
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the isomorphism of M~ and M~ we get [(a (/3, i)) = a(/3, k). But rot~,k~ --< ra,~.k~, so 

f is order  preserving on {x, y}. We proved that Q~ satisfies the countable chain 

condition. 
To show that the generic filter is uncountable, one uses the following lemma 

which is well known. 

10. LEMMA. I[ Q is a poset satisfying the c.c.c, and I Q I > No, and if G is the 
name o[ the generic filter over Q then [or some q E Q, q IF G is uncountable. 

Now if we redefine Qf as all conditions extending some q as in Lemma 10, we 

get by forcing with OI an uncountable subset of A where f is order preserving. 

We need some property that will ensure A will continue to satisfy (7) as the 
iteration goes on. This is done by: 

11. DEFINITION. P is called an appropriate poset iff for every sequence 

( (p , ,~L) la  <to1) where p~ E P  and tL is an n-tuple of increasing countable 

ordinals there are a </3 < to1 such that p, and p0 are compatible in P and 

ra(~.,) <-- r~(~.,) for every i =< n. 

12. LEMMA. I f  P is appropriate, then after forcing with P A satisfies (7). 

PROOF. If not, then in V e there is a counterexample that shows A does not 

satisfy (7), i.e., there is a name of a sequence (~L I a < to1) and a condition forcing 

that this sequence is a contradiction to (7). Now for each a < to1, pick p~ E P 

such that p, IF 6~ = / ~  for some 6~ which is (in V) an increasing sequence of 

ordinals. Applying the appropriateness of P to the sequence ((p~,/~) l a < to1) 

we get a contradiction. 

The proof of Lemma 9 gives with minor changes: 

13. LEMMA. I f  A satisfies (7) then QI is appropriate. 

Now we iterate N2 times (for example) appropriate c.c.c, posets, like Solovay 

and Tennenbaum [6] taking the direct limit at the limit stages. The proof that this 

can be done, i.e., that composition of appropriate posets is appropriate and that 

direct limits of appropriate posets are appropriate, is like the proof of [6] that the 

c.c.c, is preserved by iteration. The arguments of [6] show that we can iterate Qf 
posets so that after to2 steps every function f was dealt with (we assume C.H. in 

the ground model) and Theorem 2 is proved. 

Actually Martin's Axiom holds in the universe we obtained because we get 

Martin's Axiom for appropriate posets and in the universe we obtain, every 

non-appropriate poser does not satisfy the c.c.c. Because, if P is non- 
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appropriate ,  let ((p,,, fi~ )i a < to~) show it. Define a poset Q = {e c to~ [ e is finite 

and for a,/3 ~ e ,  a < /3  ~ r,(,.j)-< r,(~.,) for all i _--<n}. Then show that Q is an 

appropr ia te  c.c.c, poset that introduces an uncountable antichain to P. 

03. Proof of Theorem 4 

The structure of the proof  of Theorem 4 is like that of Baumgar tner ' s  proof in 

[2]. We start f rom a universe satisfying C.H. and iterate ~tz times forcing with 

c.c.c, posets of cardinality N~. We take direct limits at limit stages. At each stage 

we get a universe satisfying the C.H. and we are presented with a function 

jr: A ---> R, where A is an uncountable set of reals. If there is no uncountable 

subset upon which jr is monotonically non-increasing then we will find a poset P 

such that forcing with P introduces an uncountable subset of A on which jr is 

monotonically increasing. P consists of finite subsets of A on which jr is 

monotonically increasing, but not of all such finite subsets. First we shall 

construct a certain closed unbounded subset of to, and then we take as conditions 

in P only finite subsets of A ( C  to~) whose members  are separated by members  

of the closed unbounded set. We shall describe this proof in detail (see [4] for 

other results which use the same method).  

So we asume A is an uncountable subset of reals, jr: A ---> R is a function for 

which there is no uncountable set of reals where jr is non-increasing. (Hence we 

can assume that jr is one-to-one.)  Assuming C.H., let (r,,[a < to~) be an 

enumerat ion of all reals. 

14. DEFINITION. Define the closed unbounded C _C tot as follows. Pick any 

increasing and continuous sequence of countable e lementary submodules M~ < 

H(t~2), a < oJt (where H(N2) is the family of all sets of cardinality hereditarily 

less than N2) such that A, f, (r. l a  < toL)E Mo and M~ Ato, is an ordinal and 

(M~ fq to~ I a < tot) is a closed unbounded set of tot. The set of ordinals a such 

that M~ fq tot = a is a closed unbounded set which we call C. 

Observe that for every real r there is ot E C such that r E M,,. Using the above 

enumerat ion of the reals we shall consider A to be a subset of to] and jr to be a 

function on ordinals, let <R denote the ordering of the countable ordinals 

induced by the enumerat ion (r, la < to]) of the reals. 

Now we define P to be the poser of all finite sets of countable ordinals 

e = {a~, . . . ,  a,} such that e C A and jr ] e is monotonically increasing and 

between any two members  of e there is a member  of C. (When writing 

e = { a , , . . - , a , }  we imply that a ~ < a 2 . . . < a . . )  The partial order of P is 
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inclusion. Two condit ions are incompatible  iff their  union is not a condit ion,  i.e., 

two ordinals in it are not separated by C or f is not o rder  preserving on it. 

15. LEMMA. P satisfies the c.c.c. 

PROOf. Let  e~ = {~, • •., ~.}, ~: < to1 be NI conditions, we will find two which 

are compat ible .  We  assume the  e~'s have the  same length and fo rm a A-system, 

i.e., there  is a common  part  a C A  such that e~ Nee ,=  a for  ~ # s  c'. By fur ther  

diluting the sequence  (ee I ~c < to~) we assume that for  s c < ~:' there  is c ~ C such 

that I,.J e~ < c < fq (ec - a). Diluting again we get that the isomorphism type of 

( {~ , ' "  " , f (~50 ,""  },f,{~:t,'" ", ~.}, <o , ,  % 0  does not depend  on ~:. Moreove r  

be tween  any two points of e~ U flee] we choose a rat ional  number  and we 

assume that this finite sequence  of rat ional numbers  is the same for  all choices of 

Now because of this fixed sequence  of rat ional  numbers ,  if two condit ions e~, 

e,, are incompatible,  it can only be because for some i _-<n, SCI<RS c', but  

f(sCi)R>f(sCl) (or, ~:~r~>~:'~ and f(¢~)<af(¢'~)). This is because,  for  i # ] ,  if for  

example  ~:i <r~:j then some rational number  in be tween witnesses it and hence  ¢~ 

is also greater  than that  rat ional  number  so s¢~ < a ~ ,  but  f(¢~)<Rf(~i) and some 

rat ional  witnesses that,  hence,  again we have f(~:0<af(~¢~). 

As the number  of rat ional intervals is countable ,  there  is y < to~ such that 

(e~ I r < 7)  satisfies the following: For  every  ~¢ < Wl and every sequence  of 

rat ional intervals, L , ' "  ", I., I . , . .  -, i'. such that ~, E L and f ( ~ ) E / ~  for i _-< n, 

there  exists r < y such that r~ E L and f(~-i) ~ _~ for i _-< n. (e. I~- < y )  can be 

coded  by a real, hence  there  is a ~ C such that (e~ [ r < y )  ~ Mo. Pick some 

condit ion e~ such that all ordinals in e e - a  are above  a ( r emember  a is the 

c o m m o n  part  of the A-system). Assume,  to simplify the presenta t ion  of the 

argument ,  that n = 4, ee = {¢,, - " -, ¢4} and that a = {~¢1}. Using so,, ¢2, ¢3, f, 

(e. I r < y )  as parameters ,  ~¢4 satisfies the following proper ty  ~p(x). 

q~(x): For  any sequence  of rat ional intervals I~, 13, L,  I~, /3, 14, such that 

~ ~ L and f ( ~ )  ~ ~ for i = 2,3 and x ~ L,  f ( x ) ~  L,  there  is r < 3' 

such that  ~'~ ~ L and f(r~) ~ [~ for  2 _<- i <_- 4. 

16. CLAIM. There are uncountably many ~'4 ~ A such that ~o (~*). 

PROOF. If there  is a countable  sup remum to the set of ordinals satisfying 

¢ (x)  then this sup remum is in any of the e lementary  submodels  containing the 

parameters .  In particular,  if we deno te  by c the ordinal  in C above  ¢~, ~::, ~:3 and 

below ¢4, we will get this sup remum in M~ hence  in M~ M to~ = c, contradict ing 

c =< ~, and ~0 (¢,). 
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Remember  that we are assuming that there does not exist an uncountable set 

where f is non-increasing, so there are two ordinals ~ ,  ~ in A above c such that 
~ ( ~ ) ,  ~ ( ~ ) ,  ~ < ~  and f ( ~ ) < R f ( ~ ) .  Pick now disjoint rational intervals 
around each of the four ordinals: ~ ~ I~, f ( ~ )  E f~, ~ ~ I~, f(~:~) E T~. Obvi- 
ously, for any four points a '  E I4,' ~' E [~, a" E I4," d" ~ 14,-" the function a '  --~ 4', 

a"--~ 4" is order preserving (on the real line order). 

Look at the following property ~b(x) satisfied by ~3 and expressed with the 

parameters ~2, I~, [~, I~, f~, f, (e~ I~- < 3,). 

~b(x): For every rational interval /2, 13, /2, 13, such that ~2~I2, f(~2)E I2, 

x ~ I 3 ,  f ( x ) E f 3  there are ~-', T"< 'y  such that T' ,~- '~ L and f(z~), 

f(z'~) ~ ~ for i = 2,3 and r ~  I~, f(~'~) ~ I~, ~ ' ~  I~, f(~-~)~ I~. 

Repeating the argument of Claim 16, we obtain ~ many members of A 
satisfying ~b(x) and again, there are two, ~ , ~ A  such that ~b(~), ~b(~), 

~ ; < R ~  and f ( ~ ) < f ( ~ ) .  As before, pick disjoint rational intervals ~ I~, 

f ( ~ ) ~  I~, ~ I~, f(~:~)~ I~ and look at the property ~(x) satisfied by ~ :  

~(x): For any rational intervals /2, I-~ such that x ~I~, f ( x ) ~  I2 there are 

z ' , z " < 7  such that T~,T~(=I2, f(T~), f (~ '~)~L,  ~-'~I'~, f(z'~)~f~, 

z'~ ~ I'[, f('r'[) ~ [': for i = 3, 4. 

Finally, using again the fact that an ordinal d in C separates sc~ from ~ ,  and 
hence all parameters of 8(x)  appeared in M~, we can find ~:~, ~ satisfying ~(x) 

such that ~ < ~  and f ( sc~)<f(~) .  Pick disjoint rational intervals ~:~UI~, 

f(~::)~ _~'~, ~ I~, f(~:~)~ I~ and using ~(~:;), 8 ( ~ )  find r' ,  z " <  7 such that 
~-',~ I'~, f(z ' ,)U I'~, ~"~  I'~, f(~-'~)~ I'~ for i = 2,3,4. As z~ = r'~ we obtain that e,. 
and e~,, are compatible. So P satisfies the c.c.c. 

Using Lemma 10, we make sure that P is redefined so that every generic filter 

over P is uncountable and the remaining parts of the proof of Theorem 4 are 

standard. 

§4. Proof of Theorem 6 

The following remark, due to M. Rubin and reproduced here with his kind 

permission, shows why we have to assume in Theorem 6 that the function f is 

one-to-one. 

17. Construction of a Function which is not a Countable Union of  Monotonic 
Functions 

Let A be any set of reals of cardinality N1. Decompose A as the union of N1 
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disjoint uncountable subsets - A = 1...I . . . .  A~. Take  (r~ I a < to i )a  sequence of 

different real numbers,  and define [ :  A ~ R so that for any a < to, f I As tias 

the fixed value r~. We show that [ is not the union of countably many monotonic 

functions. Let g C f be any monotonic function. We claim that {a < 

to, llA~ n D o m ( g ) l >  1} is countable. This follows from the fact that there 

cannot be uncountably many disjoint intervals. It follows from the claim that for 

any countable collection of functions g. C f, n < to there is a < to, such that 

I D o m  (g,)  f3 A .  I =< 1 for all n < to, hence there is a real in A .  which is not in the 

domain of any g,. 

The general outline of the proof of Theorem 6 is like that of Theorem 4, and 

what we describe in this section is one step of an iteration. The idea is a way to 

divide the domain of a given real function into two parts so that by forcing, one 

part  will be the domain of countably many increasing functions and the other 

part of decreasing functions. 

As before,  we assume C.H. (r~ t a < to1) is an enumerat ion of the real numbers  

R, C C to, is a closed unbounded set such that for a E C, a = Me fq tot, where 

M~ is a countable elementary submodel of H(N2) and (r~ I i < to~) and f are 

members  of Me. (See Definition 14.) f :  A ---> R, A C R, f is an uncountable 

function which we assume to be one-to-one. For any a E C, let a '  > a be the 

successor of a in C (i.e., a '  is the least member  of C which is > a ) ,  enumera te  

the interval [a, a ' )  in an to-sequence (a .  J n E to) such that a = a0. 

18. DEFINITION. Let a E C, a sequence 7 = ( to , "  ", t.-1) of truth values (T, F )  

is said to be a good n-tuple iff for any formula ~ (x0, • • ", x,_~) with parameters  in 

Me such that ~o(ao , ' " , a , -  0 holds in H(~13), there are two n-tuples of 

ordinals --- a separated by a member  of C: (/30, • • ",/3._~), (/3~, ...,/3,'_~) (a _-_6/3, < 

c </3 ;  for some c E C)  such that ~0(/30, • •.,/3,-1), ~0(/3~, • •.,/3"_,) hold in H(N3) 

and the truth value of " f  J {r~,, ra; } is order preserving" is t, for i < n. 

19. LEMMA. Assume ot E C and 7 = ( to , "  ", t.-~) is a good n-tuple, then for 

some t, ~ {T, F}, ( to ,"  ", t.-~, t,) is a good n + 1-tuple. 

PROOF. We have two cases to consider. 

Case n = 0. Assume on the contrary that neither (T)  nor (F)  is a good 

1-tuple, so we have formulas, q~ (x0) and q~r (x0) which are counterexamples to 

(T)  and (F) respectively. Look at ~, = q~T ^ ~0e, all its parameters  are in Me and 

~O(ao) holds in H(N2). By the argument  of Claim 16 we know that there are 

uncountably many ordinals ~ above a0 such that ~0 (~) holds. Take  any two such 
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ordinals ~, ~' separated by a member  of C, then "f ] {r e, r~} is order  preserving" 

has some truth value T or F and we get a contradiction to the choice of ~o~ or q~. 

Case n > 0 .  Assume that 7 =  ( t o , ' " , t .  1) is a good n-tuple but neither 

7n(T) nor tn (F)  is a good n + 1-tuple. It follows that there are formulas 

~0~(x0,..-,x~) and ~p~(Xo,...,x,) which shows that t-~(T) and t-n(F) (respec- 

tively) are not good n + 1-tuples. So, ~ = ~-  ^ ~pF is a formula with parameters in 

M~ such that ~b(a0," . , a , ) h o l d s  in H(N2). Hence ::lsC(/~i<~:# a~ and sC>ao 

and ~ (ao , . . . ,  a,_~, ~)) holds too. Using the assumption that 7 is a good n-tuple 

for this formula, we get two n-tuples separated by a member  of C as in 

Definition 18, but as this formula begins with an existential quantifier we get two 

n + 1-tuples separated by that same member of C and derive a contradiction. 

To conclude, we get an to-sequence t- = (t~ I i < to) such that for every n < to 

t-I n is a good n-tuple. Now we define for a E C a decomposition of [a, a ' )  into 

two sets: E~ = {a, [ t, = T}, D~ = {a, I t, = F}. Next define E = I..J . . . .  E~, D = 

I..J~<~ D~. We want to decompose E fq D o m ( f )  into countably many domains 

on which f is increasing and liD will be decomposed into countably many 

decreasing functions. So we define a poset P which consists of all finite functions 

g such that D o m ( g ) C  to and for n ~ Dom(g) ,  g(n) is a finite set of A (the 

domain of f seen as a set of ordinals) with the following properties: (1) g(n) is 

separated by elements of C. (2) If n is even then g(n)CE and f ig(n) is 

increasing. (3) If n is odd then g(n)C D and f ig(n) is decreasing. 

Now to prove that P satisfies the c.c.c, one proceeds as in Lemma 15 and uses 

Lemma 19. 

§5. Entangled sets of reals 

20. DEFINITION. Let E _C R be an uncountable set of reals, we say E is 

k-entangled (k < to) ill for any set {e~ I ~ < to~} of N1 pairwise disjoint k-tuples of 

members of E, ee = (~i, '"  ", Ck), and for any k-tuple (t~,- . . ,  tk) of truth values, 

there are ¢ ~  ¢' such that ¢~ < ~'~ ill ti is T, holds for all i _-< k. Let us denote  by 

T(ee, ee,)=(h, ''',tk) the fact that ¢~ <~]---t~ for i _-<k. 

21. REMARKS. (a) Any uncountable set of reals is 1-entangled. 

(b) The set of N1 Cohen generic reals is k-entangled for every k < to. Using 

the C.H. a set of reals of cardinality Na can be constructed which is k-entangled 

for every k < to. 

(c) Martin's Axiom + 2 N° > ~ implies that for any set A _C R of cardinality 

NI, for some 1 < k < to, A is not k-entangled. 
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PROOF. We only sketch the arguments.  (a) is the fact that no uncountable set 

of reals is well ordered or conversely well ordered. For (b), the set of N1 Cohen 

generic reals is k-entangled for every k < to by the same arguments used to 

prove 7 in §2. Assuming C.H. a set of reals of cardinality 1~I1 which is k-entangled 

for every k < to is constructed as follows. (Avraham).  Let  (r~ [ a < to1) be an 

enumerat ion of all reals and (M~ [ a < too an increasing sequence of countable 

models like in Definition 14. For a E C let s~ be a Cohen generic real over  M~, 

by diluting C we can assume s~ E M~,, where a '  ~ C is the first ordinal in C 

above a. Now E = {s~ I a E C} is k-entangled for every k < to : Let (et I ~ < to~) 

be a sequence of disjoint k tuples f rom E, and ( h , ' "  ", tk) is a k-tuple of truth 

values. Pick a countable M < H ( ~ 2 )  such that (etlg <to,)E M. Say a0 = 

M O to~, then for some a~ < to1 (eel ~¢ < a 0 ) ~  M~l. Take  now any ~: such that 

setting et = (st1, "" ", sck) we have cn < ~ .  Then (st,, • • ", stk) is a k- tuple  of reals 

which is M~, generic over  the k-product  of the Cohen forcing. For a k- tuple  of 

finite functions (fl, • • ", f~) = ~ say f_<- e~ = (s~,, • •., s,~) iff each s~, extends f~. And 

define T(e,, f )  when possible, as above. The  following set is dense in the 

k-product  of Cohen posets: {Or , . . . ,  fk) = f [  for no i < a0 does f - <  e, holds or 
T(e,, f )  = ( t~, . . . ,  t~) for some i < a0}. By the genericity of (st,, • • ", sty) and the 

fact that M is an elementary submodel,  we get that T(e,, e t )= ( t l , ' . . ,  tk) for 

some i < a0. 

Proof  of (c). There are two cases: If for some uncountable A '  C A there is an 

order reversing function f :  A ' ~  A, look at the pairs (a, f (a)) ,  a E A '  to see that 

A is not 2-entangled. If there is no such uncountable A ' ,  construct a poset P 

consisting of finite approximation to an anti- isomorphism as follows. Slice A 

into N,-countable disjoint parts, like Baumgar tner  [2], and take in P only finite, 

order reversing functions whose restriction to any slice is a function from that 

slice to itself. Now if P would satisfy the c.c.c, we would get by Martin 's  Axiom, 

an order reversing uncountable function; hence P does not satisfy the c.c.c. We 

get thus, 1,11 functions showing that P does not satisfy the c.c.c., after forming a 

A-system we get a counterexample to k-entanglement  for some k < to. 

Our  aim is to show, however,  that for any k < to, Martin 's  Axiom is consistent 

with the existence of a set which is k-entangled.  We are interested in entangled 

sets because, as we shall see, the existence of an entangled set implies the 

existence of 2"' non-isomorphic Nl-dense sets of reals. 

22. DEFINITION. A, B C R are said to be ]'ar itt for every uncountable 

A'C A there is neither an order preserving nor an order reversing function 

]:: A '---~ B. 
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It can easily be seen that if A is 2-entangled then any two almost disjoint 

subsets of A are far. It follows that if M.A.  + 2 "o = 1~2 is consistent  with the 

existence of a 2-entangled set then it is consistent with the existence of 2"~ 

uncountab le  pairwise far subsets of reals. 

23. LEMMA. A s s u m e  C.H. Let  E = {re I ~ < to~} be a set o f  reals which is 

k-entangled.  Def ine  C as in §3 (Definition 14), i.e., C is a closed unbounded 

subset o f  to~ and a ~ C implies that a = M ~ to~ for some countable e lementary 

submodel  M o f  H(l ,  tz) such that (r~ I ~ < to~) ~ M and a f ixed enumeration of  the 

/e ~e ~ ~ J ~ < to,) be a sequence of  I,I1 pairwise disjoint reals is in M.  Let  ~ ~,~ ~.~ " "  e~.. 

k x n tuples of  countable increasing ordinals, n < to, where e~., = (~L, " " ", S¢~,,) and 

~,, < ~,,,~ if  i < I or i = I and  j < m, moreover for i < n there is a member  of  C > ~,, 

and  less than or equal to ~.~+~. Then  for any k × n tuple of  truth values tL~, " • ", t~,,, 

there are ~ ~ ~ ' such that for i <- n T ( e~,, , e~,,) = (tL,,"" ", t~,,). (Using this notation 

we considered tuples of  ordinals as tuples o f  reals using the enumerat ion 

(r, 1¢ < 

PROOF. We give only a sketch of the proof  which goes much along the lines 

of L e m m a  15. So let (e~. n. . .ne~,,  [ ~ < to1) be given, deno te  e~ = e~,~n-..ne~,.. We  

say that a sequence  of rat ional  intervals (Ij,~ IJ <-- k, i <= n) covers ee iff for  all 

j <= k, i <= n, r,~, ~/j , , .  (Look again at the lemma to find meaning of ~j,,.) Find, as 

in L e m m a  15, y < to~ such that (eel ~ < ~/) satisfies the following: For  any 

sequence  (/j,~ IJ =< k, i -< n) = [ of rat ional intervals, if for  some ~ < to~ this 

sequence  [ covers ee then for some ~ < 3', [ covers e~. Code  (ee [~ < 7)  with a 

real, say r is that real. Observe  next  that if for  s tat ionary many ~ <N~, ee 

contains an ordinal  below s c then Fodor ' s  T h e o r e m  shows that the ee's are not  

pairwise disjoint,  hence  assume that for  all ~ < I~, ee does not contain an ordinal  

below s c. Now take ~¢ E C, high enough so that r (the code real) is in M~ for  

a E C -  ~, (see 14), and look at e~. We assumed that there  exists an ordinal  

c E C such that  ~:k,, l < c <= ~:l,,. Using e~.l, e~,2, • . . ,  e~,._~, (e~ [ s r < T) as parame-  

ters, e~,. = (~¢L.,'" ",s%,) satisfies the following formula  ~o(xL, , "  . ,x~,,).  

q~(x~.., • •., x~..): For  any sequence  of rat ional intervals (//., IJ =< k, i =< n) which 

covers  e~,~ ~. • .nee..-~n(x~,., • • ", x~,,) there  exists ~- < y such that e~ is covered  by 

that sequence  of intervals. 

CLAIM. For any /3  < to~ there is a sequence ( ~ * , , , . - . ,  ~ * , )  above  [3 such that 

, , . . . ,  ,). 

PROOF. Like  in Claim 16, if there  was an ordina l /3  for  which the claim does 
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not hold, then we would get such a/3 in c. But e~., which is above c contradicts 

this. Now that the claim is proved we obtain 1~I~ many disjoint k-tuples satisfying 

q~ and because E is k-entangled, we can find two k-tuples e ' (n)  and e"(n)  such 

that ,p(e'(n)), q~(e"(n)), and T ( e ' ( n ) , e " ( n ) ) =  ( t~. , , . . . ,&. , ) .  Then we find dis- 

joint rational intervals (I~, [ j =< k ), (I~, I J =< k ) which cover e ' (n) and e"(n)  such 

that T(e ' ,  e") = (t~,,,. •., tk.,), for any k-tuples e'  and e" which are covered by 

(I/,, [ j -< k) and (I~, [ j =< k) respectively. Continue this for n steps until two 

sequences (I;., [j =< k, i =< n), (I~', [j _-< k, i =< n) of rational intervals are found 

such that: (1) There is e,, r < 3' which is covered by the I£~ and e,, r < 3' which is 

covered by the I~,. And (2) if e,, and e,,, are covered by the IL and the I~, 

respectively, then T(e,, ,  e~.) = ( t . ,  . . ., &.,). 

This ends the proof. 

24. THEOREM. For any k < to, M.A. + 2 ~o > ~ + there is a k-entangled set of 

reals of cardinality ~ ,  is consistent. 

PROOF. We start from a universe satisfying the C.H. and pick a set E which is 

k-entangled. Fixing some enumeration of E we look at E as a set of ordinals. 

Now iterate N2 times c.c.c, posets like [6] in order to get Martin's Axiom, but we 

have one extra concern - -  to keep E k-entangled. At limit stages we take direct 

limit and standard arguments show E remains k-entangled if it was so at every 

stage. So the problem of keeping E k-entangled is at the successor stages. We 

are at an intermediate stage V where C.H. holds, E is k-entangled and Q is a 

poset that satisfies the c.c.c. There are two cases: If in V ° E is k-entangled, then 

we continue forcing with Q. If, on the other hand, in V ° E is no longer 

k-entangled, then our aim is to find a c.c.c, poset P such that in V P Q does not 

satisfy the c.c.c, and E is k-entangled. (And then we continue forcing with P, so 

that finally we obtain Martin's Axiom.) 

As E is not k-entangled in V °, we have a k-tuple of truth values 7 =  

(tl," • ", tk) and an uncountable set S of pairwise disjoint k-tuples (in V ° )  such 

that for e # e '  in S, T(e, e') # -{ (with Boolean value 1). Now let C be a closed 

unbounded suset of to1 as in Definition 14. Every finite information in V ° can be 

described (forced) by a condition in Q, so we can find for ~ E to1 a sequence 

(q~, e~.l, • - -, e~.~+~) such that 

(a) q~ E Q. For 1 _-< i _-< k + 1, q~ I~ -° e~.~ ~ S. 

(b) All ordinals of e~.~ are below the ordinals of e~,~÷~ and moreover  there is a 

member  of C in the interval (Ue~.,, Oe~.,+l). 

(c) If ~ < ~' then for some a E C, a is greater than all ordinals in ee.k+l and 

smaller than all ordinals in e~,~. 
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The  following proper ty  holds because of our  assumption on S: For  ~ #  ~', if 

T(e,.~, e,,j)= [ then q, and q~, are incompat ible  in Q. 

Now we define P, p E P iff p C_ to~ is a finite set such that for  ~, ~' ~ p if ~ #  s ¢' 

then T(e,,., ee,,)  = t" or T(e,,., ee..) = [ for  some n _-< k + 1. 

It is clear that in V P, Q does not  satisfy the c.c.c. (ActualIy we do something 

like L e m m a  10.) We have to show that P satisfies the c.c.c, and that  E remains  

k -en tang led  in V P. We will prove  only that E stays k-entangled ,  the chain 

condi t ion is easier. Suppose  (p~, a , ) ,  r / <  tot are such that p~ ~ P and {a~ I r / <  

tot} are disjoint k- tuples  in tot, t-* = ( t* , .  •., t~) is a k- tuple  of t ruth values, we 

want ~/# r/ '  such that p~ and p,, are compat ible  and T(a,, a~,) = t'*. (See L e m m a  

12.) We assume without  loss of general i ty  that (pn, a , )  are as uni form as possible, 

so for  all 7 / <  to~, p~ are of constant  cardinali ty m and pairwise disjoint, say 

p~ = (~]', • • ", El).  Associate  with every  r / a  ((k + 1) x m ) -  1 tuple of members  of 

C which separate  be tween  the k- tuples  e~.j ~ ~ p~, j _-< k + 1. We obtain thus 

(k + 1)× m successive disjoint intervals such that e~7,j is conta ined in the 

(k + 1 )x  ( i -  1 ) + j  interval. By the pigeon hole  principle we can find some 

jo--< k + 1 such that  no m e m b e r  of a~ (which contains k e lements)  appears  in the 

(k + 1) x i + jo half open  half closed interval  for  any i _-< m. We assume now that 

}o does not  depend  on r/. 

P~ 

" { e¢7'° 
q,? forces 
these k + 1 
k-tuples to 
be in S e,~., 

q~7-, forces { 
these to be 
in S 

i i 

Ca, 

no members of a. 

Ea .  

E C  
the 1o interval in 
each of the m blocks 
contains no members of a~. 

Ea~ 

Using the separat ion by rational numbers  as in L e m m a  15 we get that for  

r / #  r/', 1 _-< i, j _-< m if i # j  then ~7 and ~ "  are all right, i.e., T(eo.., eeT',,) = [ or 

T(ee7,  eo,,) = t- for  some n _<- k + 1. So, to get p~, p~, compat ible ,  we need  to 

take care only for ~? and ~:7' i < m. For  any 77 look now at e¢7,jo i _-< m and at a~ 

we are in a case of L e m m a  23 in the following sense: The re  are a~ E C, 

l = 1 , . . . ,  2(m + 1) such that e,.~,jo is conta ined in the interval  (a21, a2~.t), i = 

1 , . . . ,  m. A n d  the members  of the k- tuple  a ,  are dispersed in the [a2~-1, a2~) 
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intervals,  i = 1, • •. ,  (m + 1). So in the nota t ions  of  L e m m a  2.3 we let n = 2m + 1, 

(e , , tne~9 . .  .hen,2,. +~ [ 77 < to1) is defined by e~,2~ = e~,.,j, and en,2,-i = [0t2,-1, or2,) O a .  

(we might  have  to  add  some  ordinals  if we want  it to be  a full k -tuple).  T h e  k x n 

tuple of  truth values is def ined according to }- and i*  such that  the conclusion of 

L e m m a  23 gives r/, 77' such that  T(e~7.jo, e~7.j,,) = 7 for i _-< m and T ( a . ,  a,,,) = "{*. 
H e n c e  p.,  p. ,  are compat ib le  and as required.  
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