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MARTIN’S AXIOM DOES NOT IMPLY THAT
EVERY TWO N;-DENSE SETS OF REALS
ARE ISOMORPHIC

BY
URI AVRAHAM' AND SAHARON SHELAH"™

ABSTRACT

Assuming the consistency of ZFC we prove the claim in the title by showing the
consistency with ZFC of: There exists a set of reals A such that every function
from A to A is order preserving on an uncountable set. We prove related
results among which is the consistency with ZFC of: Every function from the
reals into the reals is monotonic on an uncountable set.

§1. Introduction

Martin’s Axiom is so powerful and has been used so diversely that one can
almost get the impression that there is nothing this axiom cannot settle. There
are, however, some consistency constructions which are very similar to the proof
used by Solovay and Tennenbaum to get Martin’s Axiom, yet the statements
whose consistency these constructions give are not known to follow from
Martin’s Axiom (M.A.). The first example is due to J. Baumgartner who has
shown the consistency of ZFC and Martin’s Axiom and 2™ >N, and every two
N -dense sets of reals are order-isomorphic. (A set of reals is N,-dense iff it has no
end points and between any two points of the set there are N, points of the set.)
The structure of Baumgartner’s proof [2] is like that of Solovay and Tennen-
baum [6], but his proof is quite complicated. So, a natural question, asked by
Baumgartner, is whether Martin’s Axiom and 2™ >N, already imply that every
two N;-dense sets of reals are isomorphic.
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At the intermediate stages of the forcing iteration done in [2] the crucial fact
that the continuum hypothesis (C.H.) holds is used as follows: Assuming C.H.,
Baumgartner proved that for every two N;-dense sets of reals there exists a c.c.c.
poset P such that forcing with P makes the two sets isomorphic. So, it is natural
to look for a universe where 2" >N, holds and in which

There are two N;-dense sets of reals which cannot
@ be made isomorphic by any c.c.c. poset forcing.

Having obtained such a universe, it is possible to extend it further by a c.c.c.
poset forcing to get Martin’s Axiom and there are two nonisomorphic N;-dense
sets of reals, thus showing that Martin’s Axiom does not imply isomorphism of
Ni-dense sets. The strategy to get such a universe is to start with two N;-dense
sets which are very far from being isomorphic (in a sense which will be made
precise) and iteratively kill one after the other all c.c.c. posets which might make
these subsets isomorphic. To kill such a poset we introduce (generically) an
uncountable antichain to it thus erasing its c.c.c. property. This is quite a general
method of obtaining consistency results with Martin’s Axiom and it will be
described in §5.

We will get our first example for (1) in another way, using Theorem 2 which is
a consistency result on monotonic functions.

Let R be the set of reals, a function f: A— R, ACR is said to be
order-preserving iff for a,b € A, a=b—f(a)= f(b).

2. THEOREM. The following is consistent with ZFC:

There exists a set of reals A which is N,-dense such that
3) for every function f: A — A there is an uncountable subset
A’ of A such that f I A' is order preserving.

(3) implies (1) as follows: Suppose A satisfies (3),let A ={—r: r € A}, then as
we shall see, A and A are the two N;-dense sets of reals which cannot be made
isomorphic by any c.c.c. poset extension. Suppose P is a poset such that in its
Boolean universe A and A are isomorphic; then it follows that in this universe
there is a function f: A — A which is an anti-isomorphism, i.e., a <b — f(a)>
f(b). For any a € A pick now some p, € P and some h(a)E A such that
p.Ff(a)=h(a) (where x denotes the canonical name of x € V). By our
assumption, the function a — h(a) is order preserving on an uncountable subset
A'of A. But thenfor a,a’ € A’if a# a' then p, and p.. are incompatible. Hence
P does not satisfy the c.c.c.
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Theorem 2 is proved in §2.

C.H. implies that (3) does not hold; in [5], Cs, where C.H. is assumed, a
function f: A — A is constructed which is not continuous on any uncountable
subset, and hence not monotonic on any uncountable subset.

Obviously for a general set A of reals one cannot expect every function
f: A — R to be order preserving on an uncountable subset, so the following
theorem answers the natural question.

4. THEOREM. The following is consistent with ZFC and 2" = N,:

For any A C R of cardinality R, and any f: A — R there
exists a set A'C A of cardinality N, such that flA’ is

) monotic. (f is said to be monotonic iff f is non-decreasing :
x<y-—=>f(x)=f(y), or f is non-increasing. x <y —
f)Zf(y))

The proof of Theorem 4 is given in §3. In §4 we prove the following
strengthening of Theorem 4.

6. THEOREM. It is consistent with ZFC and 2" = K, that for every A C R of
cardinality N, and f: A — R, a one-to-one function, f is the union of countably
many monotonic functions.

In §5 we deal with entangled sets of reals (to be defined there) and show that
Martin’s Axiom and 2" >N, is consistent with the existence of an entangled set
of reals. These imply that there are uncountable real functions which do not
include any uncountable monotonic functions.

The question about the consistence of (5) was asked, independently, by F.
Galvin who has noticed the following: w;— [w,]é implies (5) which in turn
implies cf 2% > N,. (See [3] lemma 2 and §3 and §4, not for proofs but for some
hints.)

The proof that Martin’s Axiom does not imply the isomorphism of N,-dense
sets is due to Shelah; Avraham extracted Theorem 2 from that proof. Theorem 4
is due to Avraham; it is based on Shelah’s method for constructing c.c.c. posets
using closed unbounded subsets of w;, a method which was invented to
investigate consistency results on real orders and to simplify Baumgartner’s
proof. Theorem 6 and §5 are due to Shelah. Some further applications of these
methods will appear in [1].

We would like to thank the referee for helpful suggestions.
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§2. Proof of Theorem 2

We describe first the structure of the proof of Theorem 2. We start with a set
A of R, generic Cohen reals, A satisfies a certain property which enables us,
given any function on A into A, to force an uncountable subset on which this
function is order preserving. We iterate forcing with appropriate c.c.c. posets N
times, dealing with all possible functions and keeping this property of A.

Let V be our universe. First make a generic extension using the poset of all
finite functions from @, X w to {0, 1}, we obtain thus the set A ={r, |§ € wi}
where the r.’s are N, generic reals. In V[A], A satisfies the following property,
as can be seen:

Let (a. ,a < w;) be a sequence of n-tuples of increasing
countable ordinals,

dy ={a(a, 1), -+, a(a, n)),
)

ala, N<a(a,2)< - <a(e,n)<w,.

Then for some a < B < Wi, Fomi) = Tae.y holds for every

i=n

PrOOF. Say P ={h|h is a finite function from w,X w to {0,1}}. Let h € P
and let 7 be a name in P-forcing such that h | 7 is a function defined on w,, and
for « < w, 7(a) is an increasing n-tuple of countable ordinals. Now, for all
a<w find h,€P, h,zZh and an increasing sequence d.=
(a(a, 1), -, a(a, n)) of countable ordinals such that k. F 7(«)= a.. (We should
write canonical names for members of V, but we won’t do it.) Next, using a
A-system argument we can find an uncountable I C w, such that: (1) There is
an ! <n such that for all o, B €I, @ <B we have a(a,i)=a(B,i) for i =1
and a(a,i)<a(B,j) for I<i,j=n (2) For @,BEIL i=n and k <o,
(a(a,i),k)EDom(h,) iff (a(B,i),k)EDom(hs), and in this case
h.((a(e, i), k)= ha((a(B, i), k)). (3) {Dom(h.)|a €I} is a A-system and the
h.’s agree on the intersection of their domains (so that h, U hg is a function for
a,BEI.

Now, pickanya, B E I, a <B.Leth'=h, Uhy € P.Define h"Z h', h" € P as
follows. For every I<i=n let m; be the least integer such that
(a(a, i), m)& Dom(h,). We set h"(a(a,i),m;)=0 and h"(a(B, i), m;) =1 (this
is possible since for i > 1 a(a,i)<a(B,i)). Thinking of reals as sequences of
{0, 1} ordered lexicographically, we obtain A"l 7(a) = ., 7(B) = @p and ra@n =
r.iy holds for every i = n.
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8. DerFNITION. Let A ={r, |§€w|} be a set of reals satisfying (7). Any
function f: w,— w, can be naturally viewed as a function from A to A;
flre) = e

Given a function f: @, — w, we define a poset Q; with the aid of which we
shall obtain an uncountable subset of A where f is order preserving. We can
assume f is one to one, as the fixed function is order preserving.

Q ={eCw ’ e is finite and f l e is order preserving}.

Q; consists of finite approximations to the desired subset of A. We take the
partial order of Q; to be inclusion.

9. Lemma. IfA ={r, l £ € w\} is aset of reals satisfying (7), then for any one-
to-one f: wi— w,, Q satisfies the c.c.c.

Proor. Assume that e; C ), £ € w,, are N, conditions in Q; ; we will find two
which are compatible. e; U f[e;] = a, is a finite set of ordinals hence we can
assume that the a,’s form a A-system (i.e., by taking an uncountable subset we
assume that there is a fixed set b such that a, Na, =b for all £ <n <w).
Moreover, for every ¢ pick a rational number between any two reals in
{r, l 11 € a.}, look at the finite model whose universe M; consists of the ordinals
in ag, the reals r, for € a, and the rationals chosen between the reals, and in
which we have a (partial) function f I e; and relations <c,, < which are the
orders on the ordinals and on the reals, and the function n » r,, € a,. Again
we can assume that the set {M, |§ < w} has been appropriately thinned out so
that the isomorphism type of the model M, and the rational numbers in M; do
not depend on ¢ for ¢ <w,.

Let @ be an n-tuple enumerating in an increasing ordinal order the elements
of a;. a. = (a(¢,1), -+, a(é n)). Using property (7) of A we get a < 8 such that
Taiy = lassy for i = n. We claim that e, Ue, is in Q; thus providing two
compatible conditions. To prove this, we must show that f is order preserving on
e.Ueg. Solet x,y €Ee, Ueg, if both x and y belong to e, or e, then f is order
preserving on {r,, r,}. Assume x € e., y € eg, there are two cases: The first is that
for some i# j, x = a(a, i), y = a(B,j). Then look at a(a,j), if ru@n<wlaw,) (for
example) then there is a rational number g € M, such that 7,y < g < 1.y, but
then, as M. and M, are isomorphic, we have q <r..;, and hence 7,y < rugaj).
Moreover, from 7. < Fa(a) fOIlOWS ya(aiy < Fra, iy and then, using the rational
picked between these reals and the isomorphism of M, and M, we get
Ifa@in < Tf@aiy- The second case is that for some i, x = a(a, i), y = a(B,i). As
we wrote above, F i) = Fai. Now if k is such that f(a(e, i)) = a(a, k) then by
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the isomorphism of M, and M; we get f(a(B,i))= a(B, k). But r.ax) = ra@x) SO
f is order preserving on {x, y}. We proved that Q; satisfies the countable chain
condition.

To show that the generic filter is uncountable, one uses the following lemma
which is well known.

10. Lemma. If Q is a poset satisfying the c.c.c. and |Q|> N,, and if G is the
name of the generic filter over Q then for some q € Q, q\ G is uncountable.

Now if we redefine Qy as all conditions extending some q as in Lemma 10, we
get by forcing with Q; an uncountable subset of A where f is order preserving.

We need some property that will ensure A will continue to satisfy (7) as the
iteration goes on. This is done by:

11. DeFINITION. P is called an appropriate poset iff for every sequence
(P d.,)la < w;) where p, € P and a. is an n-tuple of increasing countable
ordinals there are a < < w, such that p, and ps; are compatible in P and
Tatai) = Taeny fOr every i = n.

12. Lemma. If P is appropriate, then after forcing with P A satisfies (7).

Proor. If not, then in V* there is a counterexample that shows A does not
satisfy (7), i.e., there is a name of a sequence (a, l a < w;) and a condition forcing
that this sequence is a contradiction to (7). Now for each a < w,, pick p, € P
such that p, I a. = b, for some b, which is (in V) an increasing sequence of
ordinals. Applying the appropriateness of P to the sequence {((p., b.) 'a < 1)
we get a contradiction.

The proof of Lemma 9 gives with minor changes:

13. Lemma. If A satisfies (7) then Qy is appropriate.

Now we iterate N, times (for example) appropriate c.c.c. posets, like Solovay
and Tennenbaum [6] taking the direct limit at the limit stages. The proof that this
can be done, i.e., that composition of appropriate posets is appropriate and that
direct limits of appropriate posets are appropriate, is like the proof of [6] that the
c.c.c. is preserved by iteration. The arguments of [6] show that we can iterate Q;
posets so that after w, steps every function f was dealt with (we assume C.H. in
the ground model) and Theorem 2 is proved.

Actually Martin’s Axiom holds in the universe we obtained because we get
Martin’s Axiom for appropriate posets and in the universe we obtain, every
non-appropriate poset does not satisfy the c.c.c. Because, if P is non-
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appropriate, let {(pa, d.)| @ < w,) show it. Define a poset Q = {e Cw|e is finite
and for o, BE €, @ <B > Iaei) =Ta@y for all i =n}. Then show that Q is an
appropriate c.c.c. poset that introduces an uncountable antichain to P.

§3. Proof of Theorem 4

The structure of the proof of Theorem 4 is like that of Baumgartner’s proof in
{2]. We start from a universe satisfying C.H. and iterate 8., times forcing with
c.c.c. posets of cardinality N,. We take direct limits at limit stages. At each stage
we get a universe satisfying the C.H. and we are presented with a function
f: A —> R, where A is an uncountable set of reals. If there is no uncountable
subset upon which f is monotonically non-increasing then we will find a poset P
such that forcing with P introduces an uncountable subset of A on which f is
monotonically increasing. P consists of finite subsets of A on which f is
monotonically increasing, but not of all such finite subsets. First we shall
construct a certain closed unbounded subset of w, and then we take as conditions
in P only finite subsets of A (C w,) whose members are separated by members
of the closed unbounded set. We shall describe this proof in detail (see {4] for
other results which use the same method).

So we asume A is an uncountable subset of reals, f: A — R is a function for
which there is no uncountable set of reals where f is non-increasing. (Hence we
can assume that f is one-to-one.) Assuming C.H., let {r.|a <)) be an
enumeration of all reals.

14. DerNITION.  Define the closed unbounded C C w, as follows. Pick any
increasing and continuous sequence of countable elementary submodules M, <
H(N;), o <o, (where H(N;) is the family of all sets of cardinality hereditarily
less than N;) such that A, f, (r. la <w))EM, and M, Nw, is an ordinal and
(M, N w, l a < w;) is a closed unbounded set of w,. The set of ordinals o such
that M, Nw, = « is a closed unbounded set which we call C.

Observe that for every real r there is « € C such that r € M,.. Using the above
enumeration of the reals we shall consider A to be a subset of w, and f to be a
function on ordinals, let <g denote the ordering of the countable ordinals
induced by the enumeration (r. la < ;) of the reals.

Now we define P to be the poset of all finite sets of countable ordinals
e ={ai, -, a.} such that e CA and f|e is monotonically increasing and
between any two members of e there is a member of C. (When writing
e={a;, -, a,} we imply that a,<a,---<a,) The partial order of P is
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inclusion. Two conditions are incompatible iff their union is not a condition, i.e.,
two ordinals in it are not separated by C or f is not order preserving on it.

15. LEMMA. P satisfies the c.c.c.

PrOOF. Let e, ={£,, -+, &}, £ <w, be N, conditions, we will find two which
are compatible. We assume the e;’s have the same length and form a A-system,
i.e., there is a common part a C A such that e; Ne; = a for §# £'. By further
diluting the sequence (e; | £ < ;) we assume that for § <§’ there is ¢ € C such
that U e, <c < N (e; — a). Diluting again we get that the isomorphism type of
{&,, - f(£), L A€L -+, €}, <om <r) does not depend on £ Moreover
between any two points of e, U f[e;] we choose a rational number and we
assume that this finite sequence of rational numbers is the same for all choices of
&E<wi.

Now because of this fixed sequence of rational numbers, if two conditions ¢,
e, are incompatible, it can only be because for some i=n, & <gé! but
f(&)=>f(&) (or, &r>€) and f(&)<wf(£}). This is because, for i# j, if for
example & <g & then some rational number in between witnesses it and hence ¢;
is also greater than that rational number so & <g £}, but f(&)<wf(§) and some
rational witnesses that, hence, again we have f(£:)<ef(¢)).

As the number of rational intervals is countable, there is y < w; such that
(e. | 7 <) satisfies the following: For every £ <w, and every sequence of
rational intervals, I,,--+, I, In -, I. such that & € I, and f(&)€ I for i =n,
there exists 7 <7 such that 7, € I, and f(r.)E L for i =n. (e, [T <y) can be
coded by a real, hence there is a € C such that (e, |7 <y)€E M.. Pick some
condition e, such that all ordinals in e, — a are above « (remember a is the
common part of the A-system). Assume, to simplify the presentation of the
argument, that n =4, e, ={&, -, &} and that a ={&}. Using &, &, &, f,
(e ,T < y) as parameters, &, satisfies the following property ¢ (x).

¢(x): For any sequence of rational intervals I, I, L, L, I, I, such that
&€l and f(&)ET fori=2,3and x EL, f(x)E L, there is 7 <y
such that . €L and f(n)E L for 2=i =4.

16. CLAIM. There are uncountably many ¢% € A such that ¢ (£%).

Proor. If there is a countable supremum to the set of ordinals satisfying
@ (x) then this supremum is in any of the elementary submodels containing the
parameters. In particular, if we denote by ¢ the ordinal in C above £, §;, £ and
below &, we will get this supremum in M, hence in M, N w: = ¢, contradicting
c=é&, and (P(§4).
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Remember that we are assuming that there does not exist an uncountable set
where f is non-increasing, so there are two ordinals £, £€5in A above c such that
©(£3), (&), £i<r&l and f(£))<ef(£%). Pick now disjoint rational intervals
around each of the four ordinals: £;€ I, f(£3) € T4, £41€ I, f(£4) € 4. Obvi-
ously, for any four points a’ € I}, a' € I, a" € I, a" € I, the function a’— @',
a”"— a” is order preserving (on the real line order).

Look at the following property (x) satisfied by £; and expressed with the
parameters &, L%, I, I%, T4, f, (e. |7 <7).

¢(x): For every rational interval I, I, I, I, such that &€ L, f(&) e L,
x €L, f(x)E I, there are 7', "<y such that 7}, 7/€ I and f(r}),
f(x9) €T for i =2,3 and 1€ I, f(r)E I, 74 I}, f(r)E T

Repeating the argument of Claim 16, we obtain N; many members of A
satisfying ¢(x) and again, there are two, £3,£5€ A such that ¢(£3), ¥(£5),
Ei<g €5 and f(£5) < f(£5). As before, pick disjoint rational intervals £i€ I3,
f(£)E TS, £5€ 14, f(€5) € T4 and look at the property 8(x) satisfied by &

5(x): For any rational intervals I, I, such that x € I, f(x) € I, there are
7',7"<y such that r5,79€ L, f(+3), f(r)E L, /€I, f(r)€ET,
el f(r1)E T for i =3,4.

Finally, using again the fact that an ordinal d in C separates ¢, from £, and
hence all parameters of 8(x) appeared in M,, we can find &1, &5 satisfying 8(x)
such that £;<g&5 and f(&3) < f(£5). Pick disjoint rational intervals £;€ I3,
f(&)E T, g5 15, f(¢5)E€ I and using 8(£2), 8(£%) find 7/,7" <y such that
el f(r)e I, +"er, f(rhe I"fori=2,3,4. As 7} = 7" we obtain that e,
and e, are compatible. So P satisfies the c.c.c.

Using Lemma 10, we make sure that P is redefined so that every generic filter
over P is uncountable and the remaining parts of the proof of Theorem 4 are
standard.

§4. Proof of Theorem 6

The following remark, due to M. Rubin and reproduced here with his kind

permission, shows why we have to assume in Theorem 6 that the function f is
one-to-one.

17. Construction of a Function which is not a Countable Union of Monotonic
Functions

Let A be any set of reals of cardinality N;. Decompose A as the union of N,
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disjoint uncountable subsets— A = U, <u, Aa. Take (7, I a < w,) a sequence of
different real numbers, and define f: A — R so that for any a < w; f | A, has
the fixed value r.. We show that f is not the union of countably many monotonic
functions. Let g Cf be any monotonic function. We claim that {a <
w,llAa NDom(g)|>1} is countable. This follows from the fact that there
cannot be uncountably many disjoint intervals. It follows from the claim that for
any countable collection of functions g. C f, n < w there is a < w, such that
|Dom(g.) N A.| =1 for all n < w, hence there is a real in A, which is not in the
domain of any g..

The general outline of the proof of Theorem 6 is like that of Theorem 4, and
what we describe in this section is one step of an iteration. The idea is a way to
divide the domain of a given real function into two parts so that by forcing, one
part will be the domain of countably many increasing functions and the other
part of decreasing functions.

As before, we assume C.H. {r, i a < wy) is an enumeration of the real numbers
R, C C w, is a closed unbounded set such that for « € C, a = M, N w,, where
M, is a countable elementary submodel of H(N;) and (r | i <w) and f are
members of M,.. (See Definition 14.) f: A—> R, A CR, f is an uncountable
function which we assume to be one-to-one. For any a € C, let a’ > « be the
successor of a in C (i.e., a’ is the least member of C which is > a), enumerate

the interval [a, a’) in an w-sequence {a. | n € w) such that a = a,.

18. DEFINITION. Let a € C, a sequence t = (to, -  *, t.—1) of truth values (T, F)
is said to be a good n-tuple iff for any formula ¢ (xo,  * *, X.—1) with parameters in
M, such that ¢(ao, -, a,-;) holds in H(N;), there are two n-tuples of
ordinals = a separated by a member of C: (B, - *, Ba=1), (Bbs** ", Bi-0 (@ E B <
¢ < B/ for some ¢ € C) such that ¢ (B, - -, Ba-1), ¢(Bo, - *, Br-1) hold in H(N)
and the truth value of ““f l {rs, rs } is order preserving” is ¢t for i <n.

19. LEmMma. Assume a € C and t = (to," * -, t.-1) is a good n-tuple, then for
some t, €{T,F}, (to,"* -, ta-1, ) is a good n + 1-tuple.

Proor. We have two cases to consider.

Case n=0. Assume on the contrary that neither (T) nor (F) is a good
1-tuple, so we have formulas, ¢r(xo) and ¢x(xo) which are counterexamples to
(T and (F) respectively. Look at ¢ = @1 A ¢, all its parameters are in M, and
¢ (ao) holds in H(N.). By the argument of Claim 16 we know that there are
uncountably many ordinals £ above a, such that ¢ (¢) holds. Take any two such



Vol. 38, 1981 N,-DENSE SETS OF REALS 171

ordinals £, £’ separated by a member of C, then “f l {rs, rz} is order preserving”
has some truth value T or F and we get a contradiction to the choice of ¢+ or ¢F.

Case n>0. Assume that ¢ =(t,, -, t._s) is a good n-tuple but neither
t™(T) nor t{F) is a good n + 1-tuple. It follows that there are formulas
@r (X0, +, %) and @r (X0, -, x,) which shows that t"(T) and t™(F) (respec-
tively) are not good n + 1-tuples. So, ¢ = ¢r A @r is a formula with parameters in
M, such that §(ao, -, a,) holds in H(N,). Hence 3¢ (M <. €# a; and &€ > ao
and (o, *, a1, £)) holds too. Using the assumption that ¢ is a good n-tuple
for this formula, we get two n-tuples separated by a member of C as in
Definition 18, but as this formula begins with an existential quantifier we get two
n + 1-tuples separated by that same member of C and derive a contradiction.

To conclude, we get an w-sequence t = (t; I i < w) such that for every n <o
t-l n is a good n-tuple. Now we define for « € C a decomposition of [e, ') into
two sets: E, ={a, |t. = T}, D, ={a, | t. = F}. Next define E = UK“,I E,, D=
U.<w, D.. We want to decompose E N Dom(f) into countably many domains
on which f is increasing and f | D will be decomposed into countably many
decreasing functions. So we define a poset P which consists of all finite functions
g such that Dom(g)C w and for n € Dom(g), g(n) is a finite set of A (the
domain of f seen as a set of ordinals) with the following properties: (1) g(n) is
separated by elements of C. (2) If n is even then g(n)CE and f | g(n) is
increasing. (3) If n is odd then g(n)C D and flg(n) is decreasing.

Now to prove that P satisfies the c.c.c. one proceeds as in Lemma 15 and uses
Lemma 19.

§5. Entangled sets of reals

20. DerFiNiTiON. Let E C R be an uncountable set of reals, we say E is
k-entangled (k < w)iff for any set {e, ' £ < ws} of R, pairwise disjoint k-tuples of

members of E, e; = (£, -, &), and for any k-tuple (t,, - - -, &) of truth values,
there are ¢ # &’ such that & < &7iff + is T, holds for all i = k. Let us denote by
T(eg, eg') = <t1, ctey, tk) the fact that f,- < §: = for i =k.

21. REMARKS. (a) Any uncountable set of reals is l-entangled.

(b) The set of N, Cohen generic reals is k-entangled for every k < w. Using
the C.H. a set of reals of cardinality N, can be constructed which is k -entangled
for every k < w.

(c) Martin’s Axiom + 2" >N, implies that for any set A C R of cardinality
N,, for some 1 <k <w, A is not k-entangled.
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ProoF. We only sketch the arguments. (a) is the fact that no uncountable set
of reals is well ordered or conversely well ordered. For (b), the set of N; Cohen
generic reals is k-entangled for every k <w by the same arguments used to
prove 7 in §2. Assuming C.H. a set of reals of cardinality N, which is k -entangled
for every k < w is constructed as follows. (Avraham). Let (r.|a <w:) be an
enumeration of all reals and (M, Ia < wy) an increasing sequence of countable
models like in Definition 14. For « € C let s. be a Cohen generic real over M.,
by diluting C we can assume s. € M,, where o’ € C is the first ordinal in C
above a. Now E = {s, l a € C}is k-entangled for every k < w: Let (e, lg < w,)
be a sequence of disjoint k tuples from E, and (t;,* - -, &) is a k-tuple of truth
values. Pick a countable M < H(N;) such that (e, l§ <w)EM. Say ap=
M N w;, then for some o < w; (egl £ <aop)€ M,,. Take now any ¢ such that
setting e, = (£, - - -, &) we have a, < ¢ Then (s, -+, s ) is a k-tuple of reals
which is M, generic over the k-product of the Cohen forcing. For a k-tuple of
finite functions {fi, - - -, f) = f, say f = e = (s, - - -, 5, ) iff each s, extends f;. And
define T(e, f) when possible, as above. The following set is dense in the
k-product of Cohen posets: {(fi,- -, fi) = f_lfor no i < a, does f = e holds or

T(e, f)=(t, " -, t) for some i < ao}. By the genericity of (s, - - -, s, ) and the
fact that M is an elementary submodel, we get that T(e, e;)=(t,,- -, &) for
some i < ao.

Proof of (c). There are two cases: If for some uncountable A’ C A there is an
order reversing function f: A'— A, look at the pairs {a, f(a)), a € A’ to see that
A is not 2-entangled. If there is no such uncountable A’, construct a poset P
consisting of finite approximation to an anti-isomorphism as follows. Slice A
into N,-countable disjoint parts, like Baumgartner [2}, and take in P only finite,
order reversing functions whose restriction to any slice is a function from that
slice to itself. Now if P would satisfy the c.c.c. we would get by Martin’s Axiom,
an order reversing uncountable function; hence P does not satisfy the c.c.c. We
get thus, 8, functions showing that P does not satisfy the c.c.c., after forming a
A-system we get a counterexample to k-entanglement for some k < w.

Our aim is to show, however, that for any k < w, Martin’s Axiom is consistent
with the existence of a set which is k-entangled. We are interested in entangled
sets because, as we shall see, the existence of an entangled set implies the
existence of 2™ non-isomorphic N;-dense sets of reals.

22. DeErFINITION. A, B C R are said to be far iff for every uncountable

A'C A there is neither an order preserving nor an order reversing function
f: A'— B.
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It can easily be seen that if A is 2-entangled then any two almost disjoint
subsets of A are far. It follows that if M.A.+2"% =N, is consistent with the
existence of a 2-entangled set then it is consistent with the existence of 2™
uncountable pairwise far subsets of reals.

23. LemMmA. Assume CH. Let E =1{r, lg <} be a set of reals which is
k-entangled. Define C as in §3 (Definition 14), i.e., C is a closed unbounded
subset of @, and o € C implies that « = M N w, for some countable elementary
submodel M of H(R.) such that (r, lf < w,) € M and a fixed enumeration of the
reals is in M. Let (e;,"e;," - -"e.n l £ < w,) be a sequence of N, pairwise disjoint
k X n tuples of countable increasing ordinals, n < w, where e;; = (&1, - *, &) and
& < &miifi<lori=landj<m, moreover fori < n there is a member of C > &,
and less than or equal to £1;.1. Then for any k X n tuple of truth values t,,, - -, tin,
there are £ # &' such that for i =n T(e.:, €)= (tii, - * =, ti). (Using this notation
we considered tuples of ordinals as tuples of reals using the enumeration

{r; | & <w})

ProOF. We give only a sketch of the proof which goes much along the lines
of Lemma 15. So let {e.," - "e;n | & < w)) be given, denote e, = ¢, - -"e;,.. We
say that a sequence of rational intervals (I;; lj =k, i =n) covers e, iff for all
j=k, i=n,r, €I, (Look again at the lemma to find meaning of ¢:.) Find, as
in Lemma 15, y <w, such that {e, ]§<y) satisfies the following: For any
sequence (I; ,j =k,i=n)=1 of rational intervals, if for some ¢ <w, this
sequence I covers e, then for some £ <4y, I covers e.. Code (e, l§ < vy) with a
real, say r is that real. Observe next that if for stationary many ¢ <N,, e
contains an ordinal below ¢ then Fodor’s Theorem shows that the e,’s are not
pairwise disjoint, hence assume that for all £ <N,, e; does not contain an ordinal
below £ Now take £ € C, high enough so that r (the code real) is in M, for
a € C—¢ (see 14), and look at e;. We assumed that there exists an ordinal
¢ € C such that &, 1<c =&, Using €1, €2, "+, €an-1, {€; | { < y) as parame-

ters, €n = (€1 * 7, Ekny satisfies the following formula ¢ (X1 - * *, Xan ).
@ (X1 "+ *, Xkn ): For any sequence of rational intervals (I;; ,j =k, i =n)which
covers €1 - -+ een_1 (X1 ", Xin) there exists 7 <y such that e, is covered by

that sequence of intervals.

Cramm. For any B < w, there is a sequence (¢% ., -+ -, £%..) above B such that

QT En)-

ProofF. Like in Claim 16, if there was an ordinal 8 for which the claim does
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not hold, then we would get such a 8 in c. But e;. which is above ¢ contradicts
this. Now that the claim is proved we obtain 8, many disjoint k-tuples satisfying
¢ and because E is k-entangled, we can find two k-tuples e'(n) and e"(n) such
that ¢(e'(n)), ¢(e"(n)), and T(e'(n),e"(n))={tin -, ). Then we find dis-
joint rational intervals (I, | j=k) (I, |j = k) which cover e’(n) and e"{n) such
that T(e’,e”)=(tin "+, tn), for any k-tuples e’ and e” which are covered by
(Iin | j=k) and (I, |j = k) respectively. Continue this for n steps until two
sequences (I, | j=ki=n), {j l j=k,i =n) of rational intervals are found
such that: (1) There is e., r <y which is covered by the I/, and e,, 7 <y which is
covered by the I7;. And (2) if e.- and e, are covered by the I/, and the I},
respectively, then T(e.,e.-) = (ti, "+, lin).
This ends the proof.

24. THEOREM. For any k < w, M.A.+ 2% > R, + there is a k -entangled set of
reals of cardinality N, is consistent.

ProoF. We start from a universe satisfying the C.H. and pick a set E which is
k-entangled. Fixing some enumeration of E we look at E as a set of ordinals.
Now iterate N, times c.c.c. posets like [6] in order to get Martin’s Axiom, but we
have one extra concern — to keep E k-entangled. At limit stages we take direct
limit and standard arguments show E remains k-entangled if it was so at every
stage. So the problem of keeping E k-entangled is at the successor stages. We
are at an intermediate stage V where C.H. holds, E is k-entangled and Q is a
poset that satisfies the c.c.c. There are two cases: If in V° E is k-entangled, then
we continue forcing with Q. If, on the other hand, in V2 E is no longer
k-entangled, then our aim is to find a c.c.c. poset P such that in V" Q does not
satisfy the c.c.c. and E is k -entangled. (And then we continue forcing with P, so
that finally we obtain Martin’s Axiom.)

As E is not k-entangled in V<, we have a k-tuple of truth values t =
(t1, - - -, t) and an uncountable set S of pairwise disjoint k-tuples (in V) such
that for e# e’ in S, T(e, e’)# t (with Boolean value 1). Now let C be a closed
unbounded suset of w, as in Definition 14. Every finite information in V< can be
described (forced) by a condition in Q, so we can find for ¢ € w, a sequence
(ge> €c1, " - -, €cx+1) such that

(@ gE€Q. For1=i<k+1, q F°e, ES.

(b) All ordinals of e;; are below the ordinals of e,;., and moreover there is a
member of C in the interval (Ue,., ﬂeg,.-ﬂ).

(¢) If £ <&’ then for some a € C, a is greater than all ordinals in e;.+: and
smaller than all ordinals in e, ;.
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The following property holds because of our assumption on S: For ¢ # &', if
T(ec, ;)= 1t then g, and g, are incompatible in Q.

Now we define P, p € P iff p C w, is afinite set such that for £, &' Ep if £#£ ¢’
then T(e.n, €)= t or T(em en)= t for some n <k +1.

It is clear that in V¥, Q does not satisfy the c.c.c. (Actually we do something
like Lemma 10.) We have to show that P satisfies the c.c.c. and that E remains
k-entangled in V*. We will prove only that E stays k-entangled, the chain
condition is easier. Suppose (p., a,), n < w, are such that p, € P and {a, ln <
wy} are disjoint k-tuples in w,, t* = (t%,---,t%)is a k-tuple of truth values, we
want 1 # 1’ such that p, and p, are compatible and T(a., a,) = ¢ *. (See Lemma
12.) We assume without loss of generality that (p., a, ) are as uniform as possible,
so for all n <, p, are of constant cardinality m and pairwise disjoint, say
pn = (€7, - -+, €n). Associate with every 5 a ((k +1) X m)— 1 tuple of members of
C which separate between the k-tuples e;; £ € p,, j =k + 1. We obtain thus
(k + 1) X m successive disjoint intervals such that eq,; is contained in the
(k +1)x (i —1)+j interval. By the pigeon hole principle we can find some
jo=k + 1 such that no member of a, (which contains k elements) appears in the
(k +1)X i + j, half open half closed interval for any i = m. We assume now that
Jjo does not depend on 7.

€a,
N
: [ } no members of a,
gy forces T
these k +1 :
k-tuples to ’ Ea,
Py bein$ €
e€C
gy _, forces laa) the j, interval in
these to be { G } each of the m blocks
in § contains no members of a,.
€a,

Using the separation by rational numbers as in Lemma 15 we get that for
n# 7', 1=i, j=m if i#] then £7 and £ are all right, i.e., T(eg . €)= t or
T(eq . eq.)= t for some n =k +1. So, to get p,, p., compatible, we need to
take care only for £7 and £ i = m. For any 7 look now at e ;, i =m and at a,
we are in a case of Lemma 23 in the following sense: There are a; € C,
I=1,--+,2(m +1) such that ez, is contained in the interval (ax, a.1), i =
1,---,m. And the members of the k-tuple a, are dispersed in the [asi-1, @)
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intervals, i = 1, -+, (m +1). So in the notations of Lemma 2.3 we let n = 2m + 1,
(eni en2 T enamn ’ n < @) is defined by e, = e;,, and €,2-1 = [@2i-1, @) N a,
(we might have to add some ordinals if we want it to be a full k-tuple). The k X n
tuple of truth values is defined according to ¢ and ¢ * such that the conclusion of
Lemma 23 gives 7, ' such that T(eg ;, €)=t for i =m and T(a,, a,)=t*.
Hence p., p, are compatible and as required.
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